您好,欢迎来到上海多泰环保科技有限公司官方网站!

收藏本站| 常见问答| 关于我们

15026900829

废水处理   关爱地球
当前位置:主页 > 新闻资讯 > 行业新闻 > 技术丨超低排放燃煤电厂WFGD系统优化运行探讨

技术丨超低排放燃煤电厂WFGD系统优化运行探讨

关注:日期:2018-05-03

在总结常规燃煤电厂WFGD系统优化运行经验的基础上,结合新技术的发展与应用,探讨经过超低排放改造的燃煤电厂WFGD系统的优化运行要素和方法。总结而言,常规的有关WFGD系统的节能降耗、脱硫效率与SO2浓度排放、控制系统与运行管理和污染物协同脱除等方而的优化方法,经过适当改进或调整后,依然适用于超低排放WFGD系统的优化。此外,应加强超低排放WFGD系统在节水和系统控制等方而新技术的研发与应用。尤其是在当前人们对大气环境污染问题日益重视和排放标准日趋严格的形势下,应多关注WFGD系统多污染协同脱除能力的提升,加快此类技术的研究和推广应用。

0引言

WFGD系统作为燃煤电厂控制SO2排放的主要设备,成为超低排放改造的重点对象。超低排放WFGD大多在传统空塔喷淋技术的基础上,根据煤种及含硫量等参数进行改造,使用复合塔技术及pH分区技术等。复合塔技术包括旋汇祸合、沸腾泡沫、增设托盘技术等;pH分区技术包括单塔双循环及双塔双循环技术等。经过超低改造,WFGD系统在提高脱硫效率的同时,其污染物协同脱除能力大多有所提高,尤其是对细颗粒物的脱除能力。

WFGD系统作为燃煤电厂除主机外的重要设备,其高效运行关系到全厂的生产经营状况,与之相关的优化运行也一直备受关注,这方面的研究报道也较多。超低排放下,面对严苛的排放标准和电价考核机制,如何继续做好WFGD系统的优化运行工作,确保其经济高效运行,将成为煤电行业关心和讨论的重要问题。

对此,本文将在梳理和总结常规燃煤电厂WFGD系统优化运行经验的基础上,结合一些新技术的发展应用,探讨WFGD系统在超低排放下的优化运行,为超低排放燃煤电厂WFGD系统的经济高效运行提供参考。

1优化运行要素

1.1 节能降耗

节能降耗关系到WFGD系统的经济运行和电厂的降本增效,包括能耗、物耗及水耗等的优化,也是优化运行的首要问题。传统WFGD作为电厂的能耗大户,厂用电率在1%~2%,而其中的浆液循环泵、增压风机及氧化风机等作为WFGD的主要设备,其耗电量约占整个系统的80%。超低排放WFGD系统的用电设备有所整合和增加,能耗状况也有所变化。WFGD的物耗主要为石灰石,水耗则主要是随烟气蒸发水量、石灰石浆液制备用水、吸收塔补水、除雾器冲洗水及排放废水等。超低排放下,由于SO2排放浓度的降低,石灰石耗量将会上升,而耗水量的变化则因除雾器改造冲洗水量的增加和其他节水技术的应用存在一定的不确定性,但水耗依然较大。总之,能耗、物耗及水耗是WFGD系统的主要成本消耗,且超低排放下,这类消耗增加明显,也将是优化的首要目标。

1.2 脱硫效率及SO2排放浓度

脱硫效率是衡量WFGD系统性能的重要指标,受反应工艺控制、烟气温度和成分及烟尘含量等影响,也与浆液循环泵及氧化风机等设备运行状况密切相关,其优化调整关系到WFGD的高效经济运行。SO2排放浓度是检验WFGD运行状况最重要的参数,也是环境监测关注的重点,受相关排放标准的约束不能太高,又因为脱硫成本及WFGD脱除能力的限制不可能太低。超低排放下,脱硫效率更高,SO2排放浓度也更低,两者的优化也将更重要。

1.3 控制系统及运行管理

对于WFGD而言,当锅炉工况、煤质、烟气条件等发生变化时,控制系统能根据运行参数变化做出快速响应和调整至关重要,良好的控制系统不仅关系到设备的安全高效利用,也关系到物耗能耗等的最优配置,更关系到系统整体的经济效益。此外,WFGD的高效运行还需要优秀的运行管理,这对于系统的节能降耗和设备使用寿命的延长均有帮助。超低排放下,排放标准的降低、调节空间的缩小、响应要求的提高、电价考核的压力和发电利润空间的压缩,对WFGD控制系统的调节能力和运行管理水平均提出了更高要求。

1.4 污染物协同脱除能力

随着人们对大气环境质量的日益重视,燃煤电厂对常规污染物(NOx、SO2及烟尘等)之外污染物的脱除能力逐渐受到关注。但目前,燃煤电厂尾部烟气净化设施己较为冗长,短期内难有空间和财力添加新的净化设施,充分挖掘利用现有烟气净化设备的协同脱除能力将是首选。WFGD系统作为燃煤电厂重要烟气净化设备之一,有一定的污染物联合脱除能力,超低排放下,其多种污染物协同脱除能力将受到更多关注。

2优化运行方法

2.1 节能降耗优化

2.1.1 能耗优化

超低排放下,WFGD系统大都取消了GGH和增压风机,并施行“引增合一”,剩下主要用电设备为浆液循环泵、氧化风机、湿式球磨机和石膏脱水系统等,相对传统WFGD系统而言,这些用电设备只在容量和数量上发生变化,因此一些常规的能耗优化方法依然适用。一般而言,当机组负荷、烟气量或入口SO2浓度发生变化时,浆液循环泵可通过调整运行台数和组合方式进行节能;其次可进行叶轮改造,改变泵的流量,降低泵在不同组合方式下的浆液裕量,确保高效运行;此外,使用低压高效喷嘴、选择合适塔型降低喷淋层高度或降低循环浆液密度均可实现能耗优化。对于氧化风机,则可通过变频改造或调整运行台数等方式实现节能。另外,合理控制吸收塔液位,保证浆液循环泵入口压头和氧化风机出口阻力之和处于最佳值,能够起到同时优化两种设备能耗的作用。需要注意的是,超低排放下,双塔WFGD系统通过减少循环泵或氧化风机数量实现能耗优化时,应优先减少一级塔的泵和风机数量,保证较高的SO2脱除效果,确保排放不超标。湿式球磨机的节能,首先要利用好磨球级配技术,控制好不同大小的钢球比例,并保持最佳钢球装载量;其次,确保石灰石原料粒径满足设计要求(<20mm);另外,根据需要提前做好规划,统筹好制粉量,减少球磨机运行时间圈等。对于石膏脱水系统,可提高旋流器底流含固量和多套石膏脱水装置错开运行,减少石膏浆液排出泵和真空皮带机运行时间,实现运行能耗减少。更重要的是,超低排放下应结合运行数据,根据不同负荷、烟气及入口SO2浓度条件,完善主要用电设备运行卡片的制定,确保能耗最优。

2.1.2 物耗优化

超低排放WFGD系统石灰石耗量有所上升,降低石灰石耗量应首先从源头上控制,尽量选用低硫煤,并严格监控石灰石品质;其次,控制合理的浆液pH值,确保石灰石的充分利用;另外,SO2排放浓度在不超标的前提下不宜过低,避免石灰石用量过高;还有,运行中注意调整减少球磨机甩料,也有利于石灰石耗量的降低。此外,超低排放下,应强化废水处理与排放管理,以免浆液中Cl-和Al3+等杂质浓度偏高,影响脱硫反应效率,增加石灰石消耗。


本公司是废水处理公司,专注食品废水处理化工废水处理重金属废水处理重金属废水处理


在线客服
 热线咨询
15026900829
扫一扫,访问手机站